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1. Motivation

A random variable X is said to be self-decomposable if for every t ≥ 0 there is random variable
Yt independent of X such that e−tX + Yt

d
= X.

Also say the distribution µ of X is self-decomposable, i.e., for t ≥ 0,

(µQt) ∗ γt = µ (γt = L (Yt), Qt(x, ·) = δe−tx). (1)

Representation (Sato–Yamazato ’84): There is a unique i.d. probability ν on Rd so that
∫
Rd log(1+

|x|)ν(ds) <∞ and (“ ˆ” means characteristic function)

µ̂(λ) = exp

{∫ ∞
0

log ν̂(e−tλ)dt

}
, λ ∈ Rd. (2)

Remarks: (i) Laws limn→∞L (
∑n
i=1

Xi−an
bn

); (ii) Equilibria of OU-type processes.

Generalization (Van Harn et al. ’82): (Qt)t≥0 = branching process; µ = equilibrium of an immigration
model. Problem: Ergodicities and exponential ergodicities.
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The literature

Sato–Yamazato (’84): necessary and sufficient condition for ergodicity of OU-type processes.

Schilling–Wang (’12), Wang (’12): ergodicity and exponential ergodicity of OU-type processes in total
variation distance.

Wang–Wang (’13): OU-type processes in infinite-dimensional state spaces (Banach spaces).

Pinsky (’72): necessary and sufficient condition for ergodicity of continuous-state branching processes with
immigration (CBI-processes).

Jin–Kremer–Rüdiger (’18+), Friesen–Jin–Rüdiger (’19+): ergodicity and exponential ergodicity of affine
processes in weak convergence and in Wasserstein distances.

Stannat (’03a, ’03b): Dawson–Watanabe superprocesses with immigration, compact metric spaces, Feller
type assumptions, Wasserstein and total variation distances.

Friesen (’19+): extensions to Lusin spaces, Borel right setting, Wasserstein distance.
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An example of application

A stable CIR-model is a continuous-state branching process with immigration {Xt : t ≥ 0},
constructed by the strong solution to (Fu–L’ 10):

dXt = α
√
αcXt−dZt − bXt−dt+ adt, (3)

where {Zt} is a Brownian motion (α = 2) or a one-sided α-table process (1 < α < 2).

◦ Let {X0, X1, · · · , Xn} be low frequency observations of the stable CIR-model.

◦ We have the consistent (conditional least squares) estimators (L–Ma ’15):

− log

∑n
k=1Xk−1

∑n
k=1Xk − n

∑n
k=1Xk−1Xk(∑n

k=1Xk−1

)2 − n∑n
k=1X

2
k−1

=: b̂n
p−→ b,

b̂n
(∑n

k=1Xk − e−b̂n
∑n
k=1Xk−1

)
n(1− e−b̂n)

=: ân
p−→ a.

◦ The decreasing speed of (b̂n − b, ân − a) as n→∞.
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L–Ma (’15): For 1 < α < (1 +
√

5)/2, as n→∞,

n(α−1)/α2
(b̂n − b, ân − a)

d−→ −eb(1, ab−1)S−1
1 S2, (4)

where (S1, S2) has characteristic function explicitly known.

Open Problem The asymptotics of (b̂n, ân) for (1 +
√

5)/2 ≤ α < 2?

Proof of the central limit theorem:

◦ Exponential ergodicity of the stable CIR-model;

◦ Limit theorems of some random point processes;

◦ Limit theorems of partial sums like
n∑
k=1

εk,

n∑
k=1

εk

1 +Xk−1

,

n∑
k=1

X2
k−1,

n∑
k=1

Xk−1εk.

The talk: ergodicities for measure-valued processes including the above model.
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2. Measure-valued branching processes

Let E be a Lusin topological space (= Borel subset of a compact metric space). Let M(E) be
the set of finite Borel measures on E.

• A Markov process in M(E) is called a MB-process if its transition semigroup (Qt)t≥0 satisfies
the (regular) branching property:∫

M(E)
e−ν(f)Qt(µ, dν) = exp{−µ(Vtf)}, f ∈ B(E)+, (5)

where ν(f) =
∫
E fdν and

Vtf(x) = − log

∫
M(E)

e−ν(f)Qt(δx,dν), x ∈ E. (6)

The operators (Vt)t≥0 satisfy VsVt = Vs+t, called the cumulant semigroup.

Example 1 (E = singleton) dXt = α
√
αcXt−dZt − bXt−dt.
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3. Decomposability and immigration structures

Say a probability N on M(E) is decomposable or C-excessive for (Qt)t≥0 if there are probabili-
ties (Nt)t≥0 such that, for t ≥ 0,

(NQt) ∗Nt = N (formally NQt 4 N by convolution). (7)

• In this case, the family (Nt)t≥0 is a skew-convolution semigroup (SC-semigroup), i.e.,

Nr+t = (NrQt) ∗Nt, r, t ≥ 0. (8)

• A transition semigroup (QNt )t≥0 on M(E) is defined by (immigration process):

QNt (µ, ·) = Qt(µ, ·) ∗Nt, t ≥ 0, µ ∈M(E). (9)

◦ N∞ := limt→∞NQt exists and is an equilibrium of (Qt)t≥0;
◦ N∞ := limt→∞Nt exists and is an equilibrium of (QNt )t≥0;
◦ N = N∞ ∗N∞. Write N ∈ E ∗p (Q) if N = N∞.

Results to be presented: (i) Representations of N ∈ E ∗p (Q); (ii) Exponential ergodicities.
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4. Dawson–Watanabe superprocesses

Let c ∈ B(E)+, b ∈ B(E) and η(x, dy) be a bounded kernel on E. Let H(x, dν) be a kernel from E to
M(E) satisfying ∫

M(E)

[ν(1) ∧ ν(1)2 + ν({x}c)]H(x, dν) <∞. (10)

• The branching mechanism is an operator φ : B(E)+ → B(E) given by

φ(x, f) = b(x)f(x)−η(x, f)+c(x)f(x)2+

∫
M(E)

[e−ν(f) − 1 + f(x)ν({x})]H(x, dν).

• The underlying process is a Borel right process ξ in E with semigroup (Pt)t≥0.

The (Dawson–Watanabe) (ξ, φ)-superprocess is an MB-process in M(E) with cumulant semi-
group (Vt)t≥0 defined by (Dynkin ’94/’02; Li ’11):

Vtf(x) = Ptf(x)−
∫ t

0
ds

∫
E
φ(y, Vsf)Pt−s(x, dy). (11)
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Recall that N ∈ E ∗p (Q) iff N is a probability on M(E) and there are probabilities (Nt)t≥0 on
M(E) such that limt→∞Nt = N and

N = (NQt) ∗Nt, t ≥ 0. (12)

◦ Let K (P ) be the set of entrance laws κ = (κt)t>0 for (Pt)t≥0, i.e.,

κrPt = κr+t, r, t > 0. (13)

◦ For κ = (κt)t>0 ∈ K (P ) write

Vt(κ, f) = lim
r→0+

κr(Vt−rf), t > 0, f ∈ B(E)+. (14)

◦ If κ ∈ K (P ) is closable, i.e., κ = (κ0Pt)t>0 for a measure κ0, we have

Vt(κ, f) = κ0(Vtf), t > 0, f ∈ B(E)+. (15)
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Theorem 1 (Lévy–Khintchine) For a (ξ, φ)-superprocess, each N ∈ E ∗p (Q) with finite first
moment has the representation, for f ∈ B(E)+,

LN(f) = exp

{
−
∫ ∞

0

[
Vs(κ, f) +

∫
K (P )

(1− e−Vs(η,f))F (dη)
]
ds

}
, (16)

where κ ∈ K (P ) and F (dη) is a σ-finite measure on K (P ).
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5. Ergodicities in total variation distance

Using another bounded kernel γ(x, dy) on E, we can rewrite

φ(x, f) = b(x)f(x)− γ(x, f) + c(x)f(x)2 +

∫
M(E)

[e−ν(f) − 1 + ν(f)]H(x, dν).

• The local projection of φ is the function φ1 on E × [0,∞) defined by:

φ1(x, z) = [b(x)− γ(x, 1)]z + c(x)z2 +

∫
M◦

[e−zν({x}) − 1 + zν({x})]H(x, dν).

Condition A There is a “nice” function φ∗ on [0,∞) such that infx∈E φ1(x, z) ≥ φ∗(z), z ≥ 0

and
∫∞

φ∗(z)−1dz <∞.

Proposition 2 Under Condition A, for t > 0 the function V̄t(x) := limλ→∞ Vtλ(x) is bounded
on E and (extinction probability):

Qt(µ, {0}) = e−µ(V̄t), µ ∈M(E). (17)
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Suppose that Condition A holds. Let N ∈ E ∗p (Q) be given by (16).

Theorem 3 For t > 0 and µ ∈M(E),

‖QNt (µ, ·)−QNt (ν, ·)‖var ≤ 2(1− e−|µ−ν|(V̄t)) ≤ 2|µ− ν|(V̄t). (18)

Corollary 4 (Strong Feller property) For t > 0 and µ, ν ∈M(E),

|QNt F (µ)−QNt F (ν)| ≤ 2‖V̄t‖‖F‖‖µ− ν‖var. (19)

Theorem 5 For t > 0,

‖Nt −N‖var ≤ 2

∫ ∞
0

[
πs(κ, V̄t) +

∫
K (P )

πs(η, V̄t)F (dη)

]
. (20)

Corollary 6 For t > 0 and µ ∈M(E),

‖QNt (µ, ·)−N‖var ≤ 2µ(V̄t) + 2

∫ ∞
0

[
πs(κ, V̄t) +

∫
K (P )

πs(η, V̄t)F (dη)

]
ds.
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Corollary 7 (Ergodicities) We have:

(i) limt→∞ ‖Nt −N‖var = 0.

(ii) If β∗ := infx∈E[b(x)− γ(x, 1)] > 0, there exists C ≥ 0 so that

‖QNt (µ, ·)−N‖var ≤ C(1 + µ(1))e−β∗t, t ≥ 0. (21)

Remark There are similar results for the Wasserstein distance.

Example 2 (Stannat ’03a/’03b) Exponential ergodicity in total variation distance for closable κ =

(κ0Pt)t>0 and F = 0.

Example 3 (Friesen ’19+) Exponential ergodicity in Wasserstein distance for closable κ and
supp(F ) ⊂ {closable entrance laws}.

Question What is new with inclosable entrance laws?
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6. The boundary immigration

The absorbing-barrier Brownian motion (aBm) ξ in (0,∞) has transition density

pt(x, y) := gt(x− y)− gt(x+ y), x, y, t > 0, (22)

where gt(·) = density of N(0, t).

◦ Take the branching mechanism φ(x, f) = cf(x)2 (c ≥ 0, x > 0).

◦ Let the entrance law κ = (κt)t>0 ∈ K (P ) given by κt(f) = ∂
∂x
Ptf(0+).

• From (ξ, φ, κ) a super aBm with immigration {Yt : t ≥ 0} can be constructed.

• We have Yt(dx) = Zt(x)dx and (∂0 = limε→0+ ε
−1δε)

∂

∂t
Zt(x) =

√
2cZt(x)Ẇt(x) +

1

2
∆Zt(x)− bZt(x) + a∂0dt+ ∂0dSt. (23)

where (St) is a pure-jump increasing Lévy process.
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Continuous immigration of the super aBm with immigration: Yt(dx) = Zt(x)dx and

∂

∂t
Zt(x) =

√
2cZt(x)Ẇt(x) +

1

2
∆Zt(x)− bZt(x) + a∂0dt.

x
The density Zt = Zt(x)

Zt(0+) = 2a: strong and continuing immigration pressure from the border
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Discontinuous immigration of the super aBm with immigration: Yt(dx) = Zt(x)dx and

∂

∂t
Zt(x) =

√
2cZt(x)Ẇt(x) +

1

2
∆Zt(x)− bZt(x) + ∂0dSt.

t
The total mass process t 7→ Yt(1)

Yτi+(1) =∞: infinite masses of the clusters of immigrants at the border
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Two types of immigration at the border:
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2. Friesen; Jin; Rüdiger (’19+): Stochastic equation and exponential ergodicity in Wasserstein distances
for affine processes. arXiv: 1901.05815.
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