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1. Motivation

A random variable X is said to be self-decomposable if for every ¢ > 0 there is random variable
Y; independent of X such thate *X 4+ Y; 4 x.

Also say the distribution @ of X is self-decomposable, i.e., fort > 0,

Q) *ve =p (7= ZLYe), Qu(®;*) = bo—tz)- (1

Representation (Sato—Yamazato '84): There is a unique i.d. probability v on R? so that Jga log(1+
|z|)v(ds) < oo and (* ~” means characteristic function)

oo
() = exp { / log ﬁ(et)\)dt}, A € R4, 2)
0
Remarks: (i) Laws lim,, Z(Z;‘ZI —2n.)- (ii) Equilibria of OU-type processes.
Generalization (Van Harn et al. ! (Qt)t>0 = branching process; p = equilibrium of an immigration

model. Problem: Ergodicities and exponential ergodicities.



The literature
Sato—Yamazato ('84): necessary and sufficient condition for ergodicity of OU-type processes.

Schilling—-Wang ('12), Wang ('12): ergodicity and exponential ergodicity of OU-type processes in total
variation distance.

Wang—Wang ('13): OU-type processes in infinite-dimensional state spaces (Banach spaces).

Pinsky ('72): necessary and sufficient condition for ergodicity of continuous-state branching processes with
immigration (CBIl-processes).

Jin—Kremer—Rdiger ('18+), Friesen—Jin—Ridiger ('19+): ergodicity and exponential ergodicity of affine
processes in weak convergence and in Wasserstein distances.

Stannat ('03a, '03b): Dawson—Watanabe superprocesses with immigration, compact metric spaces, Feller
type assumptions, Wasserstein and total variation distances.

Friesen ('19+): extensions to Lusin spaces, Borel right setting, Wasserstein distance.



An example of application

A stable CIR-model is a continuous-state branching process with immigration {X; :
constructed by the strong solution to (Fu-L 10):

dXt \/ac dZt — bXt dt + (ldt

t > 0},

3)

where {Z,} is a Brownian motion (e = 2) or a one-sided a-table process (1 < a < 2).

o Let {Xo, X1,---,X,} below frequency observations of the stable CIR-model.

o We have the consistent (conditional least squares) estimators (L—-Ma ’15):

—log Zk 1Xk 1Zk 1 nZZ:1 Xi—1 Xk — b LN
n =0 n 9
(Zk 1 Xk— 1) _nZk:1 X 4

n(zkzl X — e_bnA ZZ:I Xk_l) =: a, 2L, a.
n(l —e—bn)

o The decreasing speed of (b,, — b, @, — a) as n — oco.



L-Ma ('15): For1 < a < (1 + v/5)/2,as n — oo,

n(@=D/2* (b b a, — a) — —e®(1,ab"1) S Sa,
where (51, S2) has characteristic function explicitly known.
Open Problem The asymptotics of (b, @) for (1 + v/5)/2 < a < 2?

Proof of the central limit theorem:

o Exponential ergodicity of the stable CIR-model;
o Limit theorems of some random point processes;

o Limit theorems of partial sums like

n n

n n
€l 2
€ P X XL_1€k-
l; © Z 1+ Xp—1’ 1 v kgl e

k=1 k=

The talk: ergodicities for measure-valued processes including the above model.
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2. Measure-valued branching processes

Let E be a Lusin topological space (= Borel subset of a compact metric space). Let M (FE) be
the set of finite Borel measures on E.

e A Markov process in M (E) is called a MB-process if its transition semigroup (Q¢)¢>o satisfies
the (regular) branching property:

/ eNQy(p, dv) = exp{—n(Vif)},  f € B(E)T, 5)
M (E)
where v(f) = [ fdv and

Vif(x) = — log /M(E) e_”(f)Qt((Sw,du), x € E. (6)

The operators (V;);>o satisfy V;V; = V;, called the cumulant semigroup.

Example 1 (E = singleton) dX; = YacXi_dZ; — bX,_dt.



3. Decomposability and immigration structures

Say a probability IV on M (E) is decomposable or C-excessive for (Q¢)¢>o if there are probabili-

ties (INt)¢>0 such that, fort > 0,
(NQ:) * Ne = N (formally NQ: < NN by convolution).
e In this case, the family (N;);>o is a skew-convolution semigroup (SC-semigroup), i.e.,
Nyt = (N:Q¢) * N, r,t > 0.
e A transition semigroup (Q:Y):>0 on M (E) is defined by (immigration process):
Q7 (1,7) = Qelps-) * N, £ >0, € M(E).
o N := lim;_,o, NQ; exists and is an equilibrium of (Q):>o;

0 Ny := lim;_, o, Ny exists and is an equilibrium of (Qf’)tzo;
o N=N%xNo. Writt N € £(Q)if N = Ne.

Results to be presented: (i) Representations of N € &(Q); (i) Exponential ergodicities.

(7)
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4. Dawson-Watanabe superprocesses

Letc € B(E)*, b € B(E) and n(«x, dy) be a bounded kernel on E. Let H(z, dv) be a kernel from E to
M (E) satisfying

/ v(1) Av(1)? +v({z}9)]H(z,dv) < co. (10)
M(E)

e The branching mechanism is an operator ¢ : B(E)T — B(E) given by

¢(z, f) = b(x) f(x) —n(z, f)+c(w)f(:c)2+/ [ —1 + f(z)v({z})]H (=, dv).
M(E)
e The underlying process is a Borel right process £ in E with semigroup (P;):>o-

The (Dawson-Watanabe) (&, ¢)-superprocess is an MB-process in M (E) with cumulant semi-
group (V;)¢>o defined by (Dynkin '94/02; Li *11):

t
Vif(x) = Pif(z) — / ds [E $(ys Vo f) Prs(x, dy). (11



Recall that V € &7(Q) iff IV is a probability on M (E) and there are probabilities (IN¢);>o on
M (E) such that lim;_,o, Ny = N and

o Let ' (P) be the set of entrance laws k = (k¢)¢>o0 for (P)¢>o, i.€.,

ke Py = Ky, r,t > 0. (13)
o Fork = (Kt)t>0 € H# (P) write
Vi(s, ) = lim ko (Visf), t>0,f € B(E)T. (14)

o Ifk € Z(P) is closable, i.e., k = (koP:)t>0 for a measure ko, we have

W(Ha .f) == KO(W.f), t> Oaf S B(E)+ (15)



Theorem 1 (Lévy—Khintchine) For a (&, ¢)-superprocess, each N € &5(Q) with finite first
moment has the representation, for f € B(E)™,

v = e = [~ Ve )+ [ e o0 p@n]as), a6

where k € ¢ (P) and F(dn) is a o-finite measure on % (P).



5. Ergodicities in total variation distance

Using another bounded kernel v(x, dy) on E, we can rewrite

o(z, ) = b(zx) f(z) —7(z, f) + c(z) f(x)* + /M(E) o™ — 1+ v(f)]H(z,dv).

e The local projection of ¢ is the function ¢»; on E x [0, oo) defined by:
$1(z,2) = [b(z) — v(z, D]z + c(x)z® + | [e7TD —1 4 20 ({z})]H (2, dv).

Mo

Condition A There is a “nice” function ¢, on [0, oo) such that inf,cg ¢p1(x, 2) > ¢P«(2), 2 >0
and f°° ¢+ (2z)"ldz < oo.

Proposition 2 Under Condition A, fort > 0 the function Vi(z) := limy_, o, VzA(x) is bounded
on E and (extinction probability):

Q:i(1,{0}) = e *Y), e M(E). (17)



Suppose that Condition A holds. Let NV € £7(Q) be given by (16).

Theorem 3 Fort > 0andp € M(E),
1 (1) — QY () lvar < 2(1 — ™ I¥I(R)) < 2 — w|(W). (18)

Corollary 4 (Strong Feller property) Fort > 0 and u,v € M (E),
QY F () — QY F(w)| < 2IVA[lIIF Il — v|lvar- (19)

Theorem 5 Fort > 0,

IN: — Nllar < 2/
0

oo

[ws(n, Vi) + /%(p) ms(n, Vt)F(dn)]- (20)

Corollary 6 Fort > 0andp € M(E),

. i i i
1QN (s ) — Nllvar < 2(Va) + 2 / [m(m, Vi) + /%(P) o (n, vz)F(dm]ds.



Corollary 7 (Ergodicities) We have:

(l) limt_>oo ||Nt _— N”Var == 0
(i) If By := infzeg[b(x) — v(x,1)] > O, there exists C > 0 so that

1QN (1, +) — Nljvar < C(1 + p(1))e P, t>o0. Q1)

Remark There are similar results for the Wasserstein distance.

Example 2 (Stannat '03a/’03b) Exponential ergodicity in total variation distance for closable k =
(K,()Pt)t>0 and F = 0.

Example 3 (Friesen ’19+) Exponential ergodicity in Wasserstein distance for closable « and
supp(F') C {closable entrance laws}.

Question What is new with inclosable entrance laws?



6. The boundary immigration

The absorbing-barrier Brownian motion (aBm) £ in (0, oo) has transition density

pe(z,y) == gi(z —y) —ge(z +vy), z,y,t>0,
where g¢(-) = density of N (0, t).

o Take the branching mechanism ¢(z, f) = cf(x)? (c > 0, = > 0).

o Letthe entrance law k = (k¢)t>0 € 4 (P) given by k:(f) = a%Ptf(O-i—).

e From (&, ¢, k) a super aBm with immigration {Yz : ¢ > 0} can be constructed.

e We have Y;(dz) = Z;(x)dz and (8 = lim._,04 € 16;)
o

ot
where (S¢) is a pure-jump increasing Lévy process.

o 1
7Zt($) = v 2CZt($)Wt(a’5) + EAZt(m) — bZt($) —|— aagdt —|— aodst.

(22)

(23)



Continuous immigration of the super aBm with immigration: Y;(dx) = Zi(«)dx and
0

azt(a;) = \/2¢Zs(x)Wi(x) + %AZt(:z:) — bZ(x) + adodt.

4

>z
The density Z; = Zi(x)

Z:(04) = 2a: strong and continuing immigration pressure from the border



Discontinuous immigration of the super aBm with immigration: Y;(dz) = Z;(x)dx and
7]

aZt(a,-) = \/2¢cZi(x)Wy(x) + ;AZt(:c) — bZs(x) + BodS;.

A u 4
W - ¥
A .

The total mass process t — Y;(1)

Y. +(1) = oo: infinite masses of the clusters of immigrants at the border



Two types of immigration at the border:
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